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What is Probability?
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What is Probability?

Examples

● outcome of flipping a coin (seminal example)

● amount of snowfall

● mentioning a word

● mentioning a word “a lot”
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What is Probability?

The chance that something will happen. 

Given infinite observations of an event, the proportion of observations where a 
given outcome happens. 

Strength of belief that something is true.

“Mathematical language for quantifying uncertainty” - Wasserman
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Probability (review)

Ω : Sample Space, set of all outcomes of a random experiment

A : Event (A ⊆ Ω), collection of possible outcomes of an experiment

P(A): Probability of event A, P is a function: events→ℝ
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Probability (review)

Ω : Sample Space, set of all outcomes of a random experiment

A : Event (A ⊆ Ω), collection of possible outcomes of an experiment

P(A): Probability of event A, P is a function: events→ℝ

 

● P(Ω) = 1

● P(A) ≥ 0 , for all A

● If A1, A2, … are disjoint events then:
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Probability (review)

Ω : Sample Space, set of all outcomes of a random experiment

A : Event (A ⊆ Ω), collection of possible outcomes of an experiment

P(A): Probability of event A, P is a function: events→ℝ

P is a probability measure, if and only if

● P(Ω) = 1

● P(A) ≥ 0 , for all A

● If A1, A2, … are disjoint events then:
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Probability

Examples

● outcome of flipping a coin (seminal example)

● amount of snowfall

● mentioning a word

● mentioning a word “a lot”
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Probability (review)

Some Properties:

If B ⊆ A then P(A) ≥ P(B) 

P(A ⋃ B) ≤ P(A) + P(B)

P(A ⋂ B) ≤ min(P(A), P(B))

P(¬A) = P(Ω / A) = 1 - P(A)

/ is set difference
P(A ⋂ B) will be notated as P(A, B)
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Probability (Review)

Independence

Two Events: A and B

Does knowing something about A tell us whether B happens (and vice versa)?
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Probability (Review)

Independence

Two Events: A and B

Does knowing something about A tell us whether B happens (and vice versa)?

● A: first flip of a fair coin; B: second flip of the same fair coin
● A: mention or not of the word “happy”

B: mention or not of the word “birthday”
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Probability (Review)

Independence

Two Events: A and B

Does knowing something about A tell us whether B happens (and vice versa)?

● A: first flip of a fair coin; B: second flip of the same fair coin
● A: mention or not of the word “happy”

B: mention or not of the word “birthday”

Two events, A and B, are independent iff    P(A, B) = P(A)P(B)

12



Probability (Review)

Conditional Probability

                 P(A, B)
P(A|B) =  -------------
                    P(B)

13



Probability (Review)

Conditional Probability

                 P(A, B)
P(A|B) =  -------------
                    P(B)
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H: mention “happy” in message, m
B: mention “birthday” in message, m

P(H) = .01         P(B) =.001    P(H, B) = .0005
                         P(H|B) = ??

 



Probability (Review)

Conditional Probability

                 P(A, B)
P(A|B) =  -------------
                    P(B)
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H: mention “happy” in message, m
B: mention “birthday” in message, m

P(H) = .01         P(B) =.001    P(H, B) = .0005
                         P(H|B) = .50

H1: first flip of a fair coin is heads
H2: second flip of the same coin is heads
P(H2) = 0.5 P(H1) = 0.5    P(H2, H1) = 0.25

P(H2|H1) = 0.5



Probability (Review)

Conditional Probability

                 P(A, B)
P(A|B) =  -------------
                    P(B)

Two events, A and B, are independent iff  P(A, B) = P(A)P(B)

P(A, B) = P(A)P(B) iff P(A|B) = P(A)
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H1: first flip of a fair coin is heads
H2: second flip of the same coin is heads
P(H2) = 0.5 P(H1) = 0.5    P(H2, H1) = 0.25

P(H2|H1) = 0.5



Probability (Review)

Conditional Probability

                 P(A, B)
P(A|B) =  -------------
                    P(B)

Two events, A and B, are independent iff  P(A, B) = P(A)P(B)

P(A, B) = P(A)P(B) iff P(A|B) = P(A)

Interpretation of Independence: 
Observing B has no effect on probability of A.
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H1: first flip of a fair coin is heads
H2: second flip of the same coin is heads
P(H2) = 0.5 P(H1) = 0.5    P(H2, H1) = 0.25

P(H2|H1) = 0.5



Why Probability?
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Why Probability?

A formality to make sense of the world. 

● To quantify uncertainty
Should we believe something or not? Is it a meaningful difference?

● To be able to generalize from one situation or point in time to another. 
Can we rely on some information? What is the chance Y happens?

● To organize data into meaningful groups or “dimensions”
Where does X belong? What words are similar to X?
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Random Variables

X: A mapping from Ω to ℝ  that describes the question we care about in practice.
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Random Variables

X: A mapping from Ω to ℝ  that describes the question we care about in practice.

Example: Ω = 5 coin tosses = {<HHHHH>, <HHHHT>, <HHHTH>, <HHHTH>…}
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Random Variables

X: A mapping from Ω to ℝ  that describes the question we care about in practice.

Example: Ω = 5 coin tosses = {<HHHHH>, <HHHHT>, <HHHTH>, <HHHTH>…}
We may just care about how many tails? Thus, 

X(<HHHHH>) = 0
X(<HHHTH>) = 1 
X(<TTTHT>) = 4
X(<HTTTT>) = 4
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Random Variables

X: A mapping from Ω to ℝ  that describes the question we care about in practice.

Example: Ω = 5 coin tosses = {<HHHHH>, <HHHHT>, <HHHTH>, <HHHTH>…}
We may just care about how many tails? Thus, 

X(<HHHHH>) = 0
X(<HHHTH>) = 1 
X(<TTTHT>) = 4
X(<HTTTT>) = 4

X only has 6 possible values: 0, 1, 2, 3, 4, 5
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Random Variables

X: A mapping from Ω to ℝ  that describes the question we care about in practice.

Example: Ω = 5 coin tosses = {<HHHHH>, <HHHHT>, <HHHTH>, <HHHTH>…}
We may just care about how many tails? Thus, 

X(<HHHHH>) = 0
X(<HHHTH>) = 1 
X(<TTTHT>) = 4
X(<HTTTT>) = 4

X only has 6 possible values: 0, 1, 2, 3, 4, 5
What is the probability that we end up with k = 4 tails?

P(X(ω) = k)                                      where ω ∊ Ω    
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Random Variables

X: A mapping from Ω to ℝ  that describes the question we care about in practice.

Example: Ω = 5 coin tosses = {<HHHHH>, <HHHHT>, <HHHTH>, <HHHTH>…}
We may just care about how many tails? Thus, 

X(<HHHHH>) = 0
X(<HHHTH>) = 1 
X(<TTTHT>) = 4
X(<HTTTT>) = 4

X only has 6 possible values: 0, 1, 2, 3, 4, 5
What is the probability that we end up with k = 4 tails?

P(X = k) := P( {ω : X(ω) = k} )       where ω ∊ Ω    
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Random Variables

X: A mapping from Ω to ℝ  that describes the question we care about in practice.

Example: Ω = 5 coin tosses = {<HHHHH>, <HHHHT>, <HHHTH>, <HHHTH>…}
We may just care about how many tails? Thus, 

X(<HHHHH>) = 0
X(<HHHTH>) = 1 
X(<TTTHT>) = 4
X(<HTTTT>) = 4

X only has 6 possible values: 0, 1, 2, 3, 4, 5
What is the probability that we end up with k = 4 tails?

P(X = k) := P( {ω : X(ω) = k} )       where ω ∊ Ω    
X(ω) = 4 for 5 out of 32 sets in Ω. Thus, assuming a fair coin, P(X = 4) = 5/32 
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Random Variables

X: A mapping from Ω to ℝ  that describes the question we care about in practice.

Example: Ω = 5 coin tosses = {<HHHHH>, <HHHHT>, <HHHTH>, <HHHTH>…}
We may just care about how many tails? Thus, 

X(<HHHHH>) = 0
X(<HHHTH>) = 1 
X(<TTTHT>) = 4
X(<HTTTT>) = 4

X only has 6 possible values: 0, 1, 2, 3, 4, 5
What is the probability that we end up with k = 4 tails?

P(X = k) := P( {ω : X(ω) = k} )       where ω ∊ Ω    
X(ω) = 4 for 5 out of 32 sets in Ω. Thus, assuming a fair coin, P(X = 4) = 5/32 

(Not a variable, but a function that we end up notating a lot like a variable) 27



Random Variables

X: A mapping from Ω to ℝ  that describes the question we care about in practice.

Example: Ω = 5 coin tosses = {<HHHHH>, <HHHHT>, <HHHTH>, <HHHTH>…}
We may just care about how many tails? Thus, 

X(<HHHHH>) = 0
X(<HHHTH>) = 1 
X(<TTTHT>) = 4
X(<HTTTT>) = 4

X only has 6 possible values: 0, 1, 2, 3, 4, 5
What is the probability that we end up with k = 4 tails?

P(X = k) := P( {ω : X(ω) = k} )       where ω ∊ Ω    
X(ω) = 4 for 5 out of 32 sets in Ω. Thus, assuming a fair coin, P(X = 4) = 5/32 

(Not a variable, but a function that we end up notating a lot like a variable)

X is a discrete random variable 
if it takes only a countable 

number of values. 
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Random Variables

X: A mapping from Ω to ℝ  that describes the question we care about in practice.

X is a discrete random variable 
if it takes only a countable 

number of values. 

X is a continuous random variable if it 
can take on an infinite number of 

values between any two given values. 
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Random Variables

X: A mapping from Ω to ℝ  that describes the question we care about in practice.

Example: Ω = inches of snowfall = [0, ∞) ⊆ ℝ

30

X is a continuous random variable if it 
can take on an infinite number of 

values between any two given values. 



Random Variables

X: A mapping from Ω to ℝ  that describes the question we care about in practice.

Example: Ω = inches of snowfall = [0, ∞) ⊆ ℝ

X amount of inches in a snowstorm

X(ω) = ω

31

X is a continuous random variable if it 
can take on an infinite number of 

values between any two given values. 



Random Variables

X: A mapping from Ω to ℝ  that describes the question we care about in practice.

Example: Ω = inches of snowfall = [0, ∞) ⊆ ℝ

X amount of inches in a snowstorm

X(ω) = ω

What is the probability we receive (at least) a inches?
P(X ≥ a) := P( {ω : X(ω) ≥ a} ) 

What is the probability we receive between a and b inches?
P(a ≤ X ≤ b) := P( {ω : a ≤ X(ω) ≤ b} ) 32

X is a continuous random variable if it 
can take on an infinite number of 

values between any two given values. 



Random Variables

X: A mapping from Ω to ℝ  that describes the question we care about in practice.

Example: Ω = inches of snowfall = [0, ∞) ⊆ ℝ

X amount of inches in a snowstorm

X(ω) = ω

What is the probability we receive (at least) a inches?
P(X ≥ a) := P( {ω : X(ω) ≥ a} ) 

What is the probability we receive between a and b inches?
P(a ≤ X ≤ b) := P( {ω : a ≤ X(ω) ≤ b} ) 

P(X = i) := 0, for all i ∊ Ω

(probability of receiving exactly i 

inches of snowfall is zero) 

33

X is a continuous random variable if it 
can take on an infinite number of 

values between any two given values. 



Probability Review: 1-26

● what constitutes a probability measure?

● independence

● conditional probability

● random variables
○ discrete
○ continuous
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Language Models Review: 1-28

● Why are language models (LMs) useful?

● Maximum Likelihood Estimation for Binomials

● Idea of Chain Rule, Markov assumptions

● Why is word sparsity an issue?

● Further interest: Leplace Smoothing, Good-Turing 
Smoothing, LMs in topic modeling.
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Disjoint Sets vs. Independent Events

Independence: … iff P(A,B) = P(A)P(B)

Disjoint Sets:  If two events, A and B, come from disjoint sets, then 
P(A,B) = 0
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Disjoint Sets vs. Independent Events

Independence: … iff P(A,B) = P(A)P(B)

Disjoint Sets:  If two events, A and B, come from disjoint sets, then 
P(A,B) = 0

Does independence imply disjoint? 
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Disjoint Sets vs. Independent Events

Independence: … iff P(A,B) = P(A)P(B)

Disjoint Sets:  If two events, A and B, come from disjoint sets, then 
P(A,B) = 0

Does independence imply disjoint? No
  Proof: A counterexample: A: first coin flip is heads, B: second coin flip is heads; 
                                         P(A)P(B) = P(A,B), but .25 = P(A, B) =/= 0
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Disjoint Sets vs. Independent Events

Independence: … iff P(A,B) = P(A)P(B)

Disjoint Sets:  If two events, A and B, come from disjoint sets, then 
P(A,B) = 0

Does independence imply disjoint? No
  Proof: A counterexample: A: first coin flip is heads, B: second coin flip is heads; 
                                         P(A)P(B) = P(A,B), but .25 = P(A, B) =/= 0

Does disjoint imply independence?
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Tools for Decomposing Probabilities

Whiteboard Time!

● Table
● Tree

Examples: 

● urn with 3 balls (with and without replacement)
● conversation lengths
● championship bracket
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Probabilities over >2 events...

Independence: 

A1, A2, …, An are independent iff P(A1, A2, …, An) = ∏P(Ai)

41



Probabilities over >2 events...

Independence: 

A1, A2, …, An are independent iff P(A1, A2, …, An) = ∏P(Ai)

Conditional Probability:

P(A1, A2, …, An-1 | An) = P(A1, A2, …, An-1, An) / P(An)
P(A1, A2, …, Am-1 | Am,Am+1, …, An) = P(A1, A2, …, Am-1, Am,Am+1, …, An) /

P(Am,Am+1, …, An)

(just think of multiple events happening as a single event)
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Conditional Independence

A and B are conditionally independent, given C, IFF

P(A, B | C) = P(A|C)P(B|C)

Equivalently, P(A|B,C) = P(A|C)

Interpretation: Once we know C, B doesn’t tell us anything useful about A.

Example: Championship bracket
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Bayes Theorem - Lite

GOAL: Relate P(A|B) to P(B|A)

Let’s try: 
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Bayes Theorem - Lite

GOAL: Relate P(A|B) to P(B|A)

Let’s try: 

(1) P(A|B) = P(A,B) / P(B), def. of conditional probability

(2) P(B|A) = P(B,A) / P(A) = P(A,B) / P(A), def. of conf. prob; sym of set union
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Bayes Theorem - Lite

GOAL: Relate P(A|B) to P(B|A)

Let’s try: 

(1) P(A|B) = P(A,B) / P(B), def. of conditional probability

(2) P(B|A) = P(B,A) / P(A) = P(A,B) / P(A), def. of conf. prob; sym of set union

(3) P(A,B) = P(B|A)P(A), algebra on (2) ← known as “Multiplication Rule”
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Bayes Theorem - Lite

GOAL: Relate P(A|B) to P(B|A)

Let’s try: 

(1) P(A|B) = P(A,B) / P(B), def. of conditional probability

(2) P(B|A) = P(B,A) / P(A) = P(A,B) / P(A), def. of conf. prob; sym of set union

(3) P(A,B) = P(B|A)P(A), algebra on (2) ← known as “Multiplication Rule”

(4) P(A|B) = P(B|A)P(A) / P(B), Substitute P(A,B) from (3) into (1) 
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Bayes Theorem - Lite

GOAL: Relate P(A|B) to P(B|A)

Let’s try: 

(1) P(A|B) = P(A,B) / P(B), def. of conditional probability

(2) P(B|A) = P(B,A) / P(A) = P(A,B) / P(A), def. of conf. prob; sym of set union

(3) P(A,B) = P(B|A)P(A), algebra on (2) ← known as “Multiplication Rule”

(4) P(A|B) = P(B|A)P(A) / P(B), Substitute P(A,B) from (3) into (1) 
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Law of Total Probability and Bayes Theorem

GOAL: Relate P(Ai|B) to P(B|Ai), 
for all i = 1 ... k, where A1 ... Ak partition Ω
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Law of Total Probability and Bayes Theorem

GOAL: Relate P(Ai|B) to P(B|Ai),
for all i = 1 ... k, where A1 ... Ak partition Ω

partition: P(A1 U A2 … U Ak) = Ω
                 P(Ai, Aj) = 0, for all i ≠ j
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Law of Total Probability and Bayes Theorem

GOAL: Relate P(Ai|B) to P(B|Ai),
for all i = 1 ... k, where A1 ... Ak partition Ω

partition: P(A1 U A2 … U Ak) = Ω
                 P(Ai, Aj) = 0, for all i ≠ j

law of total probability: If A1 ... Ak partition Ω, 
   then for any event, B
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Law of Total Probability and Bayes Theorem

GOAL: Relate P(Ai|B) to P(B|Ai),
for all i = 1 ... k, where A1 ... Ak partition Ω

partition: P(A1 U A2 … U Ak) = Ω
                 P(Ai, Aj) = 0, for all i ≠ j

law of total probability: If A1 ... Ak partition Ω, 
   then for any event, B
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Law of Total Probability and Bayes Theorem

GOAL: Relate P(Ai|B) to P(B|Ai), 
for all i = 1 ... k, where A1 ... Ak partition Ω

Let’s try:
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Law of Total Probability and Bayes Theorem

GOAL: Relate P(Ai|B) to P(B|Ai), 
for all i = 1 ... k, where A1 ... Ak partition Ω

Let’s try:

(1) P(Ai|B) = P(Ai,B) / P(B)

(2) P(Ai,B) / P(B) = P(B|Ai) P(Ai) / P(B),  by multiplication rule
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Law of Total Probability and Bayes Theorem

GOAL: Relate P(Ai|B) to P(B|Ai), 
for all i = 1 ... k, where A1 ... Ak partition Ω

Let’s try:

(1) P(Ai|B) = P(Ai,B) / P(B)

(2) P(Ai,B) / P(B) = P(B|Ai) P(Ai) / P(B),  by multiplication rule
but in practice, we might not know P(B)
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Law of Total Probability and Bayes Theorem

GOAL: Relate P(Ai|B) to P(B|Ai), 
for all i = 1 ... k, where A1 ... Ak partition Ω

Let’s try:

(1) P(Ai|B) = P(Ai,B) / P(B)

(2) P(Ai,B) / P(B) = P(B|Ai) P(Ai) / P(B),  by multiplication rule
but in practice, we might not know P(B)

(3) P(B|Ai) P(Ai) / P(B) = P(B|Ai) P(Ai) / (                             ), by law of total probability
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Law of Total Probability and Bayes Theorem

GOAL: Relate P(Ai|B) to P(B|Ai), 
for all i = 1 ... k, where A1 ... Ak partition Ω

Let’s try:

(1) P(Ai|B) = P(Ai,B) / P(B)

(2) P(Ai,B) / P(B) = P(B|Ai) P(Ai) / P(B),  by multiplication rule
but in practice, we might not know P(B)

(3) P(B|Ai) P(Ai) / P(B) = P(B|Ai) P(Ai) / (                             ), by law of total probability

Thus,  P(Ai|B) = P(B|Ai) P(Ai) / (                          ) 57



Probability Theory Review: 2-2

● Conditional Independence

● How to derive Bayes Theorem

● Law of Total Probability

● Bayes Theorem in Practice 
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Working with data in python

= refer to python notebook
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Random Variables, Revisited

X: A mapping from Ω to ℝ  that describes the question we care about in practice.

X is a discrete random variable 
if it takes only a countable 

number of values. 

X is a continuous random variable if it 
can take on an infinite number of 

values between any two given values. 
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Random Variables, Revisited

X: A mapping from Ω to ℝ  that describes the question we care about in practice.

Example: Ω = inches of snowfall = [0, ∞) ⊆ ℝ

X amount of inches in a snowstorm

X(ω) = ω

What is the probability we receive (at least) a inches?
P(X ≥ a) := P( {ω : X(ω) ≥ a} ) 

What is the probability we receive between a and b inches?
P(a ≤ X ≤ b) := P( {ω : a ≤ X(ω) ≤ b} ) 

P(X = i) := 0, for all i ∊ Ω

(probability of receiving exactly i 

inches of snowfall is zero) 

61

X is a continuous random variable if it 
can take on an infinite number of 

values between any two given values. 



Random Variables, Revisited

X: A mapping from Ω to ℝ  that describes the question we care about in practice.

Example: Ω = inches of snowfall = [0, ∞) ⊆ ℝ

X amount of inches in a snowstorm

X(ω) = ω

What is the probability we receive (at least) a inches?
P(X ≥ a) := P( {ω : X(ω) ≥ a} ) 

What is the probability we receive between a and b inches?
P(a ≤ X ≤ b) := P( {ω : a ≤ X(ω) ≥ b} ) 

P(X = i) := 0, for all i ∊ Ω

(probability of receiving exactly i 

inches of snowfall is zero) 
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X is a continuous random variable if it 
can take on an infinite number of 

values between any two given values. 

How to model?



Continuous Random Variables
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How to model?

Discretize them!
(group into discrete bins)



Continuous Random Variables
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How to model?

Discretize them!
(group into discrete bins)

Histograms



Continuous Random Variables

65



Continuous Random Variables
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P(bin=8) = .32

P(bin=12) = .08



Continuous Random Variables

67But aren’t we throwing away information? 

P(bin=8) = .32

P(bin=12) = .08



Continuous Random Variables
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Continuous Random Variables

69

X is a continuous random variable if it 
can take on an infinite number of 

values between any two given values. 

X is a continuous random variable if there exists a function fx such that:



Continuous Random Variables
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X is a continuous random variable if it 
can take on an infinite number of 

values between any two given values. 

X is a continuous random variable if there exists a function fx such that:

fx : “probability density function” (pdf)



Continuous Random Variables

71

X is a continuous random variable if it 
can take on an infinite number of 

values between any two given values. 

X is a continuous random variable if there exists a function fx such that:

PDFs

fx : “probability density function” (pdf)



Continuous Random Variables
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Continuous Random Variables
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CRV Review: 2-4

● Concept of PDF

● Formal definition of a pdf

● How to create a continuous random variable in python

● Plot Histograms

● Plot PDFs

74



Continuous Random Variables

Common Trap

●              does not yield a probability

○                      does

○ ᭲ may be anything (ℝ)

■ thus,               may be > 1
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Continuous Random Variables

Some Common Probability Density Functions
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Continuous Random Variables

Common pdfs: Normal(μ, σ2)

              =
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Continuous Random Variables

Common pdfs: Normal(μ, σ2)

              =

μ: mean (or “center”) 
     =  expectation

σ2: variance, 
σ: standard deviation 78



Common pdfs: Normal(μ, σ2)

              =

μ: mean (or “center”) 
     =  expectation

σ2: variance, 
σ: standard deviation

Continuous Random Variables

79

Credit: Wikipedia



Continuous Random Variables

Common pdfs: Normal(μ, σ2)

X ~ Normal(μ, σ2), examples:

● height

● intelligence/ability

● measurement error

● averages (or sum) of 

lots of random variables
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Continuous Random Variables

Common pdfs: Normal(0, 1)  (“standard normal”)

How to “standardize” any normal distribution:

● subtract the mean, μ (aka “mean centering”)
● divide by the standard deviation, σ

z = (x - μ)  / σ,   (aka “z score”)

81Credit: MIT Open Courseware: Probability and Statistics



Continuous Random Variables

Common pdfs: Normal(0, 1)

82Credit: MIT Open Courseware: Probability and Statistics



Continuous Random Variables

Common pdfs: Uniform(a, b)

              =
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Continuous Random Variables

Common pdfs: Uniform(a, b)

              =

84

X ~ Uniform(a, b), examples:

● spinner in a game

● random number generator

● analog to digital rounding error



Continuous Random Variables

Common pdfs: Exponential(λ)

λ: rate or inverse scale

ᶔ: scale   (                 )

85

Credit: Wikipedia



Continuous Random Variables

Common pdfs: Exponential(λ)

X ~ Exp(λ), examples:

● lifetime of electronics

● waiting times between rare events

(e.g. waiting for a taxi)

● recurrence of words across 

documents

86

Credit: Wikipedia



Continuous Random Variables

How to decide which pdf is best for my data? 

Look at a non-parametric curve estimate:
(If you have lots of data)

● Histogram
● Kernel Density Estimator
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Continuous Random Variables

How to decide which pdf is best for my data? 

Look at a non-parametric curve estimate:
(If you have lots of data)

● Histogram
● Kernel Density Estimator

K: kernel function, h: bandwidth

(for every data point, draw K and add to density)
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Continuous Random Variables

How to decide which pdf is best for my data? 

Look at a non-parametric curve estimate:
(If you have lots of data)

● Histogram
● Kernel Density Estimator

K: kernel function, h: bandwidth

(for every data point, draw K and add to density)
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Continuous Random Variables
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Continuous Random Variables
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just like a pdf, this 
function takes in an x 
and returns the 
appropriate y on an 
estimated distribution 
curve

to figure out y for a given x, 
take the sum of where each 
where each kernel (a density 
plot for each data point in 
the original X) puts that x. 



Continuous Random Variables

Analogies

● Funky dartboard
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Credit: MIT Open Courseware: Probability and Statistics



Continuous Random Variables

Analogies

● Funky dartboard

●

● Random number generator
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Cumulative Distribution Function

●

●

● Random number generator
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Cumulative Distribution Function

95

For a given random variable X, the 
cumulative distribution function (CDF), 

Fx: ℝ → [0, 1], is defined by:



Cumulative Distribution Function
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For a given random variable X, the 
cumulative distribution function (CDF), 

Fx: ℝ → [0, 1], is defined by:

Exponential

Normal

Uniform



Cumulative Distribution Function
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For a given random variable X, the 
cumulative distribution function (CDF), 

Fx: ℝ → [0, 1], is defined by:

Exponential

Normal

Uniform

normal cdf



Cumulative Distribution Function
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For a given random variable X, the 
cumulative distribution function (CDF), 

Fx: ℝ → [0, 1], is defined by:

Exponential

Normal

Uniform

Pro:               yields a probability!

Con: Not intuitively interpretable.



Random Variables, Revisited

X: A mapping from Ω to ℝ  that describes the question we care about in practice.

X is a discrete random variable 
if it takes only a countable 

number of values. 

X is a continuous random variable if it 
can take on an infinite number of 

values between any two given values. 
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Discrete Random Variables
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X is a discrete random variable 
if it takes only a countable 

number of values. 

For a given random variable X, the 
cumulative distribution function (CDF), 

Fx: ℝ → [0, 1], is defined by:



Discrete Random Variables
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X is a discrete random variable 
if it takes only a countable 

number of values. 

For a given random variable X, the 
cumulative distribution function (CDF), 

Fx: ℝ → [0, 1], is defined by:

Binomial (n, p)

(like normal)

Discrete
Uniform



Discrete Random Variables
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X is a discrete random variable 
if it takes only a countable 

number of values. 

For a given random variable X, the 
cumulative distribution function (CDF), 

Fx: ℝ → [0, 1], is defined by:

For a given discrete random variable X,  
probability mass function (pmf), 

fx: ℝ → [0, 1], is defined by:



Discrete Random Variables
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X is a discrete random variable 
if it takes only a countable 

number of values. 

For a given random variable X, the 
cumulative distribution function (CDF), 

Fx: ℝ → [0, 1], is defined by:

For a given discrete random variable X,  
probability mass function (pmf), 

fx: ℝ → [0, 1], is defined by:

Binomial (n, p)



Discrete Random Variables
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X is a discrete random variable 
if it takes only a countable 

number of values. 

For a given random variable X, the 
cumulative distribution function (CDF), 

Fx: ℝ → [0, 1], is defined by:

For a given discrete random variable X,  
probability mass function (pmf), 

fx: ℝ → [0, 1], is defined by:

Binomial (n, p)



Discrete Random Variables

Common Discrete Random Variables

● Binomial(n, p)

 
example: number of heads after n coin flips (p, probability of heads)

● Bernoulli(p) = Binomial(1, p)
example: one trial of success or failure

105

Binomial (n, p)



Discrete Random Variables

Common Discrete Random Variables

● Binomial(n, p)

 
example: number of heads after n coin flips (p, probability of heads)

● Bernoulli(p) = Binomial(1, p)
example: one trial of success or failure

● Discrete Uniform(a, b)
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Binomial (n, p)



Discrete Random Variables

Common Discrete Random Variables

● Binomial(n, p)

 
example: number of heads after n coin flips (p, probability of heads)

● Bernoulli(p) = Binomial(1, p)
example: one trial of success or failure

● Discrete Uniform(a, b)
● Geometric(p)

P(X = k) = p(1 - p)k-1,  k ≥ 1
example: coin flips until first head
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Binomial (n, p)

Geo(p)



Discrete Random Variables

Common Discrete Random Variables

● Binomial(n, p)

 
example: number of heads after n coin flips (p, probability of heads)

● Bernoulli(p) = Binomial(1, p)
example: one trial of success or failure

● Discrete Uniform(a, b)
● Geometric(p)

P(X = k) = p(1 - p)k-1,  k ≥ 1
example: coin flips until first head
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Binomial (n, p)

discrete random variables

Geo(p)



Maximum Likelihood Estimation (parameter estimation)

Given data and a distribution, how does one choose the parameters?
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Maximum Likelihood Estimation (parameter estimation)

Given data and a distribution, how does one choose the parameters?

likelihood function:

maximum likelihood estimation: What is the θ that maximizes L?
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Maximum Likelihood Estimation (parameter estimation)

Given data and a distribution, how does one choose the parameters?

likelihood function: log-likelihood function:

maximum likelihood estimation: What is the θ that maximizes L?
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Maximum Likelihood Estimation (parameter estimation)

Given data and a distribution, how does one choose the parameters?

likelihood function: log-likelihood function:

maximum likelihood estimation: What is the θ that maximizes L?

Example: X
1
, X

2
, …, X

n
 ~ Bernoulli(p), then f(x;p) = px(1 - p)1-x, for x = 0, 1.
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Maximum Likelihood Estimation (parameter estimation)

Given data and a distribution, how does one choose the parameters?

likelihood function: log-likelihood function:

maximum likelihood estimation: What is the θ that maximizes L?

Example: X
1
, X

2
, …, X

n
 ~ Bernoulli(p), then f(x;p) = px(1 - p)1-x, for x = 0, 1.
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Maximum Likelihood Estimation (parameter estimation)

Given data and a distribution, how does one choose the parameters?

likelihood function: log-likelihood function:

maximum likelihood estimation: What is the θ that maximizes L?

Example: X
1
, X

2
, …, X

n
 ~ Bernoulli(p), then f(x;p) = px(1 - p)1-x, for x = 0, 1.
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Maximum Likelihood Estimation (parameter estimation)

Given data and a distribution, how does one choose the parameters?

likelihood function: log-likelihood function:

maximum likelihood estimation: What is the θ that maximizes L?

Example: X
1
, X

2
, …, X

n
 ~ Bernoulli(p), then f(x;p) = px(1 - p)1-x, for x = 0, 1.

take the derivative and set to 0 to find:
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Probability Theory Review: 2-11

● common pdfs: Normal, Uniform, Exponential

● how does kernel density estimation work?

● common pmfs: Binomial (Bernoulli), Discrete Uniform, Geometric

● cdfs (and how to transform out from a random number generator (i.e. uniform 

distribution)  into another distribution)

● how to plot: pdfs, cdfs, and pmfs in python. 

● MLE revisited: how to derive the parameter estimate from the likehood 

function
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Maximum Likelihood Estimation (parameter estimation)

Given data and a distribution, how does one choose the parameters?

likelihood function: log-likelihood function:

maximum likelihood estimation: What is the θ that maximizes L?

Example: X
1
, X

2
, …, X

n
 ~ Bernoulli(p), then f(x;p) = px(1 - p)1-x, for x = 0, 1.

take the derivative and set to 0 to find:
117



Maximum Likelihood Estimation 

Given data and a distribution, how does one choose the parameters?

likelihood function: log-likelihood function:

maximum likelihood estimation: What is the θ that maximizes L?

Example: X ~ Normal(μ, σ), then

take the derivative and set to 0 to find:
118

GOAL: 



Maximum Likelihood Estimation 

Given data and a distribution, how does one choose the parameters?

likelihood function: log-likelihood function:

maximum likelihood estimation: What is the θ that maximizes L?

Example: X ~ Normal(μ, σ), then

take the derivative and set to 0 to find:
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GOAL: 

Normal pdf



Maximum Likelihood Estimation 

Example: X ~ Normal(μ, σ), then

GOAL: take the derivative and set to 0 to find: 120



Maximum Likelihood Estimation 

Example: X ~ Normal(μ, σ), then

GOAL: take the derivative and set to 0 to find:
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Maximum Likelihood Estimation 

Example: X ~ Normal(μ, σ), then

first, we find μ using partial derivatives: 

GOAL: take the derivative and set to 0 to find:
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Maximum Likelihood Estimation 

Example: X ~ Normal(μ, σ), then

first, we find μ using partial derivatives: 
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Maximum Likelihood Estimation 

Example: X ~ Normal(μ, σ), then

first, we find μ using partial derivatives: 

 

now σ:
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Maximum Likelihood Estimation 

Example: X ~ Normal(μ, σ), then

first, we find μ using partial derivatives: 

 

now σ:
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Maximum Likelihood Estimation 

Example: X ~ Normal(μ, σ), then

first, we find μ using partial derivatives: 

 

now σ:
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sample mean

sample variance



Maximum Likelihood Estimation 

Try yourself:

Example: X ~ Exponential(λ),

 hint: should arrive at something almost familiar; then recall 
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Expectation, revisited

Conceptually: Just given the distribution and no other information: what value 
should I expect?

128



The expected value of X is:

denoted:

Expectation, revisited

Conceptually: Just given the distribution and no other information: what value 
should I expect?

Formally: 
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The expected value of X is:

denoted:

Expectation, revisited

Conceptually: Just given the distribution and no other information: what value 
should I expect?

Formally: 
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“expectation” “mean” “first moment”



The expected value of X is:

denoted:

Expectation, revisited

Conceptually: Just given the distribution and no other information: what value 
should I expect?

Formally: 

131

“expectation” “mean” “first moment”

Alternative Conceptualization: If I had to summarize a distribution with only one 
number, what would do that best? 
(the average of a large number of randomly generated numbers from the distribution)



Expectation, revisited

Examples: 

X ~ Bernoulli(p):

X ~ Uniform(-3,1):
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The expected value of X is:

denoted:



Probability Theory Review: 2-16

● MLE over a continuous random variable

● mean and variance

● The concept of expectation 

● Calculating expectation for 

○ discrete variables

○ continuous variables
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